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Principle of 
Inclusion and Exclusion 

 
• An Illustrative Example 

Determine the number of integers n, 1 ≤ n ≤ 100,  

which are not divisible by 2, 3, 5. 

Let S = {1, 2, …, 100} and N = |S| = 100. 

Define three conditions as follows : 

 c1 :  divisible by 2;  

c2 :  divisible by 3;  

c3 :  divisible by 5. 

The answer is denoted by N( 1c 2c 3c ), which is  

evaluated below. 
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N(c1) = └100/2┘ = 50;  N(c2) = └100/3┘ = 33;  

N(c3) = └100/5┘ = 20. 

N(c1c2) = └100/6┘ = 16;  N(c1c3) = └100/10┘ = 10; 

N(c2c3) = └100/15┘ = 6. 

N(c1c2c3) = └100/30┘ = 3. 

N( 1c 2c 3c ) = N − (N(c1) + N(c2) + N(c3)) + 

  (N(c1c2) + N(c1c3) + N(c2c3)) − 

  N(c1c2c3) 

 = 100 − (50 + 33 + 20) + (16 + 10 + 6) − 3 

 = 26.  
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• The Principle  

S :  a set;  N = |S| 

c1, c2, …, ct :  conditions 

N(ci) :  the number of elements in S that satisfy ci  

N(cicj) :  the number of elements in S that satisfy ci and 
 cj  (and perhaps some others) 

N( ic ) :   the number of elements in S that do not satisfy 
 ci  (N( ic ) = N − N(ci)) 

N( ic jc ) :  the number of elements in S that do not satisfy 
 either of ci and cj 
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Theorem.  The number of elements in S that satisfy none 

of c1, c2, …, ct is equal to  

N( 1c 2c … tc )  =  N  −  

  ∑
≤≤ ti1

N(ci)  + 

  ∑
≤<≤ tji1

N(cicj)  −  

   ∑
≤<<≤ tkji1

N(cicjck)  +  

   •  •  •  +  

   (− 1)tN(c1c2…ct).  
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When  t = 2,  c1 → A  and  c2 → B. 

 

N( 1c 2c ) = |S| − |A∪B|  

 = |S| − (|A| + |B| − |A∩B|) 

 = |S| − (|A| + |B|) + |A∩B| 
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When  t = 3,  c1 → A,  c2 → B,  and  c3 → C. 

 

N( 1c 2c 3c ) = |S| − |A∪B∪C|  

 = |S| − (|A| + |B| + |C| − |A∩B| − |A∩C| − 

  |B∩C| + |A∩B∩C|) 

 = |S| − (|A| + |B| + |C|) + 

  (|A∩B| + |A∩C| + |B∩C|) − 

  |A∩B∩C| 
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This theorem can be proved by induction on t. 

Here we prove it by a combinatorial method. 
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Observation : 

 

 |A∪B| = |A| + |B| − |A∩B| 

 a 1 = 1 + 0 − 0 

 b 1 = 1 + 0 − 0 

 c 1 = 1 + 1 − 1 

 d 1 = 0 + 1 − 0 

 e 0 = 0 + 0 − 0 
           −−−−−−−−−−−−−−−−−−−−− 
  4 = 3 + 2 − 1  
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Proof : For each x ∈ S, we show that x contributes 

the same count to each side of the equation. 

N( 1c 2c … tc )  =  N  − ∑
≤≤ ti1

N(ci)  + ∑
≤<≤ tji1

N(cicj)  − 

   ∑
≤<<≤ tkji1

N(cicjck)  +   •  •  •   + 

   (− 1)tN(c1c2…ct).  

Case 1.  x satisfies none of the conditions. 

x is counted once in N( 1c 2c … tc ) and N,  but 

not in the other terms. 
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Case 2.  x satisfies r of the conditions. 

(1)  x contributes nothing to N( 1c 2c … tc ) 

(2)  x is counted once in N. 

(3)  x is counted (
1
r ) times in ∑

≤≤ ti1
N(ci). 

(4)  x is counted (
2
r ) times in ∑

≤<≤ tji1
N(cicj). 

  • 

  • 

 • 

 x is counted (
r
r ) times in ∑ N(

1ic
2ic … 

ric ).  

 ⇒ left-hand side :   0.  

  right-hand side :  1 − (
1
r ) + (

2
r ) − … + (− 1)r(

r
r )  

 = (1 + (− 1))r = 0. 
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Corollary.  The number of elements in S that satisfy at 

least one of the conditions is N(c1 or c2 or … or ct) =  

N − N( 1c 2c … tc ). 
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Let  S0 = N. 

S1 = ∑
≤≤ ti1

N(ci).  

S2 = ∑
≤<≤ tji1

N(cicj).  

 • 

 • 

 • 

Sk = ∑ N(
1ic

2ic … 
kic ). 

Theorem.  The number of elements in  S  that satisfy exactly 

m  of  t  conditions  is 

Em =  Sm − (
1

1+m )Sm+1 + (
2

2+m )Sm+2 − … +  

  (− 1)t−m(
mt

t
−

)St. 
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Proof.  For each x ∈ S, we show that x contributes the  

same count to each side of the equation.  

Case 1.  x satisfies fewer than m conditions. 

x is not counted on either side of the equation. 

Case 2.  x satisfies exactly m of the conditions.  

x is counted once in Em and once in Sm, but 

not in Sm+1, Sm+2, …, St. 
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Case 3.  x satisfies r (m < r ≤ t) of the conditions.  

x is counted  (
m
r )  times in Sm,  (

1+m
r )  times in  

Sm+1,  …,  (
r
r )  times in Sr.  

But,  x contributes nothing to the other terms. 

⇒ left-hand side :  0.  

right-hand side :  

  (
m
r ) − (

1
1+m )(

1+m
r ) + (

2
2+m )(

2+m
r ) −  …  + 

 (− 1)r−m(
mr

r
−

)(
r
r ) 

 =   
  . 

   . (left as an exercise) 
  . 

 =  0.  
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Theorem.  The number of elements in  S  that satisfy at  

least  m  of  t  conditions  is  

 Lm =  Sm − ( 1−m
m )Sm+1 + (

1
1

−
+

m
m )Sm+2 − … +  

  (− 1) t−m(
1
1
−
−

m
t )St. 

An inductive proof of this theorem was outlined as  

problem 8 on page 401 of Grimaldi’s book. 

For your reference, the following shows an alternative  

proof that is based on a combinatorial method. 
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For each x ∈ S, we show that x contributes the same count to each side of the equation. 

Case 1. x satisfies fewer than m conditions. 

 x is not counted on either side of the equation. 

Case 2. x satisfies r (m ≤ r ≤ t) of the t conditions. 

x is counted once in Lm, r
m
⎛ ⎞
⎜ ⎟
⎝ ⎠

 times in Sm, 
1

r
m +
⎛ ⎞
⎜ ⎟
⎝ ⎠

 times in Sm+1, …, 

r
r
⎛ ⎞
⎜ ⎟
⎝ ⎠

 times in Sr. But, x contributes nothing to any of the other terms in 

the equation. 

Left-hand side: 1. 

Right-hand side: 

 r
m
⎛ ⎞
⎜ ⎟
⎝ ⎠

 − 1 1
m r

m m− +
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 + 
1
1 2

m r
m m
+
− +

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 − … + (−1)r−m 1
1

r r
m r
−
−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 = ( 1)
10

r m k
m k mk r m

− +
∑

+ −≤ ≤ −
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

(−1)k 

 = ( 1)
0

r m k
m kk r m k

− +
∑

+≤ ≤ −
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

(−1)k  (assume m − 1 + k ≥ 0) 

 = 
0

r
m kk r m

m
k∑

+≤ ≤ −

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  (refer to Concrete Mathematics, 2nd edition, by Graham, 

   Knuth, and Patashnik, pp. 164, Eq. (5.14)) 

 = r
m kk

m
k∑

+
−⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

  (
k
m−⎛ ⎞

⎜ ⎟
⎝ ⎠

 = 0 as k < 0, and 
m k

r
+

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 0 as k > r − m) 

 = r m
r m
−⎛ ⎞

⎜ ⎟−⎝ ⎠
  (refer to Concrete Mathematics, 2nd edition, by Graham, Knuth, and 

  Patashnik, pp. 169, Eq. (5.23)) 

 = 1. 

Since m ≥ 0 and k ≥ 0, we have m = 0 and k = 0 if m − 1 + k < 0.  

When m = 0 and k = 0, the right-hand side is 0
r⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 1. 
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Ex.  Compute the number of integer solutions to 

 x1 + x2 + x3 + x4 = 18,  where 0 ≤ xi ≤ 7 for 1 ≤ i ≤ 4. 

 Let S be the set of integer solutions to 

 x1 + x2 + x3 + x4 = 18,  where xi ≥ 0 for 1 ≤ i ≤ 4. 

 Also, let ci denote the constraint of xi ≥ 8. 

 Then,  N( 1c 2c 3c 4c ) is the answer. 

 N = H(4, 18) = C(4 + 18 − 1, 18) = C(21, 18). 

 N(ci) = H(4, 10) = C(13, 10). 

 N(cicj) = H(4, 2) = C(5, 2). 

 N(cicjck) = 0. 

 N(c1c2c3c4) = 0. 

 N( 1c 2c 3c 4c ) =  C(21, 18) − C(4, 1) × C(13, 10) +  

   C(4, 2) × C(5, 2) − 0 + 0 

 = 246. 
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Ex.  Compute the number of ways to permute a, b, c, …,  

 y, z so that none of car, dog, pun, and byte occurs. 

 Let S be the set of all permutations of the 26 letters.  

 Let c1, c2, c3 and c4 denote the conditions that the  

 permutations contain car, dog, pun, and byte,  

 respectively. 

 Then,  N( 1c 2c 3c 4c ) is the answer. 

 N = 26!. 

 N(c1) = N(c2) = N(c3) = 24!;  N(c4) = 23!. 

 N(c1c2) = N(c1c3) = N(c2c3) = 22!;  N(cic4) = 21!. 

 N(c1c2c3) = 20!;  N(cicjc4) = 19!. 

 N(c1c2c3c4) = 17!. 

 N( 1c 2c 3c 4c ) =  26! − (3 × 24! + 23!) + (3 × 22! +  

   3 × 21!) − (20! + 3 × 19!) + 17!. 
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Ex.  Given a positive integer n ≥ 2, the Euler’s phi function, 

  denoted by φ(n), is the number of integers m so that 

 1 ≤ m ≤ n and gcd(m, n) = 1 (m, n are relatively prime). 

 For example,  φ(2) = 1,  φ(3) = 2,  φ(4) = 2,  and  φ(5) = 4. 

 Consider n = 1260 = 22
 × 32

 × 5 × 7 (質因數分解). 

 Let S = {1, 2, …, 1260}. 

 φ(1260) can be computed as follows. 

 Let c1, c2, c3, c4 denote the conditions that the integers 

 m are divisible by 2, 3, 5, 7, respectively. 

 Then,  φ(1260) = N( 1c 2c 3c 4c ). 
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N = 1260. 

 N(c1) = 1260/2 = 630;  N(c2) = 1260/3 = 420; 

 N(c3) = 1260/5 = 252;  N(c4) = 1260/7 = 180. 

 N(c1c2) = 1260/6 = 210;  N(c1c3) = 1260/10 = 126; 

 N(c1c4) = 1260/14 = 90;  N(c2c3) = 1260/15 = 84; 

   N(c2c4) = 1260/21 = 60;  N(c3c4) = 1260/35 = 36. 

 N(c1c2c3) = 1260/30 = 42;  N(c1c2c4) = 1260/42 = 30; 

 N(c1c3c4) = 1260/70 = 18;  N(c2c3c4) = 1260/105 = 12.   

 N(c1c2c3c4) = 1260/210 = 6. 

 N( 1c 2c 3c 4c ) =  1260 − (630 + 420 + 252 + 180) +  

   (210 + 126 + 90 + 84 + 60 + 36) −  

   (42 + 30 + 18 + 12) + 6 

  = 288. 
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In general, suppose n = 1
1
ep 2

2
ep … t

t
ep  (質因數分解). 

 Then,  φ(n) =  n × (1 − 
1

1
p ) × (1 − 

2

1
p ) × … × (1 − 

1
tp ). 

 For example,  when  n = 1260, 

 φ(1260) =   1260 × (1 − 
1
2 ) × (1 − 

1
3 ) × (1 − 

1
5 ) × (1 − 

1
7 ) 

  = 288.  
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Another description of Euler’s formula  (? no proof 

was found): 

 Suppose that n is a positive integer and p1, p2, …, 

 pr are distinct prime numbers, where n > pi for all  

 1 ≤ i ≤ r. 

 Let  F(n) = |{m | 1 ≤ m ≤ n is an integer and  

  gcd(m, pi) = 1 for all 1 ≤ i ≤ r}|. 

 Then, F(n) is equal to 

 f(n)  =  n × (1 − 
1

1
p ) × (1 − 

2

1
p ) × … × (1 − 

1
rp ), 

 if  f(n)  is an integer. 
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Ex. Suppose that  n = 23,  p1 = 2,  and  p2 = 3  (i.e., r = 2).  

 There are 8 integers in {1, 2, …, 23} that are relatively 

 prime to both 2 and 3. They are 1, 5, 7, 11, 13, 17, 19,  

 and 23. 

  f(n)  =  n × (1 − 
1
2 ) × (1 − 

1
3 )  =  3

n . 

  f(23) is not an integer 

 We first compute  f(21) = 7  (or f(24) = 8),  and then 

 obtain  F(23) = F(21) + 1 = f(21) + 1 = 8  (or  F(23) =  

 F(24) = f(24) = 8),  where 1 indicates the integer 23. 
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Ex.  Six married couples are to be seated at a circular  

 table.  In how many ways can they be arranged 

 so that no wife sits next to her husband? 

 Let ci denote the condition that couple i are  

 neighboring, where 1 ≤ i ≤ 6. 

 The answer is  N( 1c 2c … 6c ). 

 N = 
12!
12  = 11!. 

 N(ci) = 
11!
11  × 2 = 2 × 10!. 

 N(cicj) = 
10!
10  × 22 = 22

 × 9!. 

 Similarly,  N(cicjck) = 23
 × 8!,  N(cicjckcl) = 24

 × 7!, 

 N(cicjckclcr) = 25 × 6!,  N(cicjckclcrcs) = 26 × 5!. 

 N( 1c 2c … 6c ) = 11! − C(6, 1) × 2 × 10! + C(6, 2) × 22
 × 9! 

   − C(6, 3) × 23
 × 8! + C(6, 4) × 24

 × 7! 

   − C(6, 5) × 25 × 6! + C(6, 6) × 26
 × 5! 

  = 12,771,840. 
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Ex.  How many ways are there to connect five vertices  

 a, b, c, d and e so that none of them is isolated? 

 
  (O) (O) (X) (X) 

 Let c1, c2, c3, c4 and c5 denote the conditions that  

 vertices a, b, c, d and e are isolated, respectively.  

 The answer is  N( 1c 2c … 5c ). 
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 N = 210
  (at most 10 edges among five vertices). 

 N(ci) = 26. 

 N(cicj) = 23. 

 N(cicjck) = 21. 

 N(cicjckcl) = N(cicjckclcr) = 20. 

 N( 1c 2c … 5c ) = 210 − C(5, 1) × 26 + C(5, 2) × 23 

   − C(5, 3) × 21 + C(5, 4) × 20 

   − C(5, 5) × 20 

  = 768. 
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Ex.  For the example above, how many ways are there to  

 connect five vertices a, b, c, d and e so that exactly  

 two of them are isolated? 

 The answer is  E2 = S2 − C(3, 1) × S3 + C(4, 2) × S4  

    − C(5, 3) × S5 

   = C(5, 2) × 23 − C(3, 1) × C(5, 3) × 21  

    + C(4, 2) × C(5, 4) × 20 

    − C(5, 3) × C(5, 5) × 20 

   = 80 − 60 + 30 − 10  

   = 40. 



 28

• Derangements  

An arrangement of 1, 2, …, n is called a derangement, 

if 1 is not at the first place (its natural position),  2 is not 

at the second place (its natural position), …, and n is not  

at the nth place (its natural position).  

Consider n = 10,  and let ci denote the condition that  

integer i is at the ith place,  where 1 ≤ i ≤ 10.  

The number of derangements of 1, 2, …, 10 is  

N( 1c 2c … 10c ) =  10! − (
1

10 )9! + (
2

10 )8! − … + (10
10 )0!  

 =  1334960.  
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Ex. There are seven books undergoing a two-round  

 review process of seven reviewers.  Each book is 

 reviewed by two distinct reviewers.  In how many  

 ways can these books be reviewed?  

 There are 7! ways for the first-round review. 

 There are d7 ways for the second-round review, 

 where d7 is the number of derangements of 1, 2, 

 …, 7. 

 The answer is 7! × d7. 
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× :  rook (車) 

• Rook Polynomials  

  

 

Problem :  Given a chessboard C of arbitrary shape 

and size, determine the number rk of ways of placing k  

nontaking rooks on C. 

 

…

 …

… × … … ……
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C : 

 

                   r1 = 6,  r2 = 8,  r3 = 2 

 rk = 0  for k ≥ 4                

 

Let r0 = 1.  

rook polynomial R(C, x)  =  ∑
∞

=0i
ri xi 

         =  1 + 6x + 8x2
 + 2x3 
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C2 : 

C1 : 

 

C :   

 

 

 R(C, x) = 1 + 11x + 40x2
 + 56x3

 + 28x4
 + 4x5 

R(C1, x) = 1 + 4x + 2x2 

R(C2, x) = 1 + 7x + 10x2
 + 2x3  

C1 and C2 are “disjoint” (no square in the same row or  

column) 

⇒  R(C, x) = R(C1, x) ⋅ R(C2, x) 
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Count r3 in C as follows. 

Case 1.  All three rooks are placed on C2 :  2 ways 

Case 2.   Two rooks are placed on C2 and one rook is  
  placed on C1 :  10 × 4 = 40 ways 

Case 3.  One rook is placed on C2 and two rooks are 
  placed on C1 :  7 × 2 = 14 ways 

r3 = 2 + 40 + 14 = 56 

Compute the coefficient r3 of x3 in R(C1, x) ⋅ R(C2, x) :  

R(C1, x) ⋅ R(C2, x)  

=  (1 + 4x + 2x2) ⋅ (1 + 7x + 10x2
 + 2x3)  

=  . . . + 1 ⋅ 2x3 + 4x ⋅ 10x2 + 2x2
 ⋅ 7x + . . .  

=  . . . + (1 ⋅ 2 + 4⋅ 10 + 2 ⋅ 7)x3 + . . .  

       Case 1  Case 2   Case 3 
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If C is a chessboard made up of pairwise disjoint 

subboards C1, C2, …, Cn, then 

R(C, x) = R(C1, x) ⋅ R(C2, x) ⋅  …  ⋅ R(Cn, x). 
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Let rk(C) denote the number of ways of placing k  

nontaking rooks on the chessboard C. 

C: 

 

 

rk(C) consists of the following two parts. 

  ∗ 
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Cs : 

 

Ce : (Ce is obtained from C by deleting 

the designated square.) 

1.  A rook on the square designated by “∗”. 

(Cs is obtained from C by deleting the  

row and the column containing the 

designated square.) 

 rk−1(Cs) is included in rk(C).   

2.  No rook on the designated square. 

 

 

  rk(Ce) is included in rk(C). 

Therefore, rk(C) = rk−1(Cs) + rk(Ce),  and 

  R(C, x) = xR(Cs, x) + R(Ce, x). 
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= x ⋅

 
∗ 

  

  

  

+

  
∗ 

   

   

   

= x2 ⋅  

 

 

+ x ⋅  

  

 

+ x ⋅   
  

 

+  

 
∗ 

  

  

 

= x2 ⋅
 

 

 

+ 2x ⋅
  

  

 

+ x ⋅
 

 

 

+  

 

  

 

= (x2 + x) ⋅  

 

 

+ (2x + 1) ⋅   

  

 

 

Ex. 

 

 

 

 

 

 

 

 

= (x2
 + x) ⋅ (1 + 2x) + (2x + 1) ⋅ (x2

 + 3x + 1) 

= 1 + 6x + 10x2
 + 4x3.      

  ∗ 
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C : 

 

Ex.   

 

 

Determine the number of ways of placing four nontaking 

rooks on the unshaded area of C. 

Let ci be the condition that a rook is placed on the shaded 

area of row i. 

N( 1c 2c 3c 4c ) =  S0 – S1 + S2 – S3 + S4 

            =  5! – r1 ⋅ 4! + r2 ⋅ 3! – r3 ⋅ 2! + r4 ⋅ 1!, 

where  R(the shaded area of C, x)  

= (1 + 3x + x2) ⋅ (1 + 4x + 3x2)  

= 1 + 7x + 16x2
 + 13x3

 + 3x4 = 1 + r1x + r2x2
 + r3x3

 + r4x4. 

∴  N( 1c 2c 3c 4c ) =  5! – 7 ⋅ 4! + 16 ⋅ 3! – 13 ⋅ 2! + 3 ⋅ 1!  

=  25.  
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Ex. Four people, denoted by R1, R2, R3 and R4, are  

 assigned to five tables, denoted by T1, T2, T3, T4  

 and T5, in a wedding reception.  In how many  

 ways can they be assigned to four distinct tables, 

 subject to the following four restrictions: 

(a) R1 is not assigned to T1 or T2; 

(b) R2 is not assigned to T2; 

(c) R3 is not assigned to T3 or T4; 

(d) R4 is not assigned to T4 or T5. 

 

 The answer is 25, as computed in the example above. 
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Ex. Two dice, denoted by R and G, are rolled six times. 

 Under the condition of (R, G) ∉ {(1, 2), (2, 1), (2, 5),  

 (3, 4), (4, 1), (4, 5), (6, 6)}, what is the probability  

 that all six values 1, 2, …, 6 occur for both R and G? 

 Consider the following left chessboard, where the row 

 (column) labels represent the outcome on R (G). 

  

 The right chessboard is obtained by relabeling the 

 rows and columns, where the seven shaded squares 

 constitute four pairwise disjoint subboards. 

 Therefore,  r(C, x) = (1 + 4x + 2x2) × (1 + x)3 

  = 1 + 7x + 17x2
 + 19x3

 + 10x4
 + 2x5. 
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 The probability is  P = 6
6!
29

S× ,  where there are 6! ways 

  for 1, 2, 3, 4, 5, 6 to occur with R and S is the number 

 of ways for 1, 2, 3, 4, 5, 6 to occur with G under the 

 condition. 

 For example, (1, ?), (2, ?), (3, ?), (4, ?), (5, ?), (6, ?) and  

 (4, ?), (5, ?), (6, ?), (1, ?), (2, ?), (3, ?) are two ways for  

 1, 2, 3, 4, 5, 6 to occur with R. Then,  each way for the  

 former to have 1, 2, 3, 4, 5, 6 occurring with G, e.g.,  

 (1, 6), (2, 2), (3, 3), (4, 4), (5, 5), (6, 1), uniquely 

 corresponds to a way for the latter to have 1, 2, 3, 4, 5, 

  6 occurring with G, e.g., (4, 4), (5, 5), (6, 1), (1, 6),  

 (2, 2), (3, 3), and vice versa. 
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 Let ci be the condition that when R = i,  (R, G) is  

 located at a shaded square. 

 S =  N( 1c 2c … 6c ) 

  = 6! − 7 × 5! + 17 × 4! − 19 × 3! + 10 × 2! − 2 × 1! 

  = 192 

 Thus,  P = 6
6! 192

29
×

 ≈ 0.00023. 
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Ex. How many one-to-one functions   

 f : {1, 2, 3, 4} → {u, v, w, x, y, z} 

 are there so that f(1) ∉ {u, v},  f(2) ∉ {w},   

 f(3) ∉ {w, x},  and  f(4) ∉ {x, y, z}? 

 Consider the following chessboard. 

  

 r(C, x) = (1 + 2x) × (1 + 6x + 9x2
 + 2x3)  

  = 1 + 8x + 21x2
 + 20x3

 + 4x4. 

 Let ci be the condition that  (i, f(i))  is located at a 

 shaded square. 

 The answer is  N( 1c 2c 3c 4c ). 
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 N( 1c 2c 3c 4c ) = (6 × 5 × 4 × 3) − 8 × (5 × 4 × 3) +  

    21 × (4 × 3) − 20 × 3 + 4 × 1 

   = 76. 

   

  (do Exercise  # 1)    
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Generating Functions 

• Introductory Examples 

Ex.  There are three ways to choose one object from 

three distinct objects a, b, and c (namely, a or b or c). 

Similarly, there are three ways to choose two objects 

from them (namely, ab or bc or ac). 

Interpretation by polynomials : 

+ :  or 

⋅ :  and 

xi :  to select i objects 

1 + ax :  to select a or not to select a 

1 + bx :  to select b or not to select b 

1 + cx :  to select c or not to select c 
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(1 + ax) ⋅ (1 + bx) ⋅ (1 + cx) :  to select a or not to select a,  

to select b or not to select b, and to select c or not to  

select c. 

(1 + ax) ⋅ (1 + bx) ⋅ (1 + cx) = 1 + (a + b + c)x + (ab + bc +  

ac)x2
 + (abc)x3 

⇓ 

The ways of selection are φ (to select none), a or b or  

c (to select one object), ab or bc or ac (to select two  

objects), abc (to select three objects).  
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Ex.  Compute the number of solutions (x1, x2, x3) for 

x1 + x2 + x3 = 12  (4 ≤ x1, 2 ≤ x2, 2 ≤ x3 ≤ 5). 

4 ≤ x1 ≤ 8 :  (x4
 + x5

 + x6
 + x7

 + x8)  

(The possible values for x1 are 4, 5, 6, 7, and 8.)  

2 ≤ x2 ≤ 6 :  (x2
 + x3

 + x4
 + x5

 + x6)  

2 ≤ x3 ≤ 5 :  (x2
 + x3

 + x4
 + x5)  

Each term xixjxk, where i + j + k = 12, in the product of  

(x4
 + x5

 + x6
 + x7

 + x8) ⋅ (x2
 + x3

 + x4
 + x5

 + x6) ⋅ (x2
 + x3

 + x4
 +  

x5) represents a solution, and vice versa.  

So, the coefficient of x12 in the product is the number 

of solutions. 
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• Ordinary Generating Functions 

Let (a0, a1, a2, …, ar, …) be the symbolic representation  

of a sequence of events, or let it simply be a sequence of  

numbers.  The function  F(x) = a0μ0(x) + a1μ1(x) + … +  

arμr(x) + …  is called the ordinary generating function of  

(a0, a1, a2, …, ar, …),  where μ0(x), μ1(x), …, μr(x), …  is 

a sequence of functions of x that are used as indicators. 

The indicator functions, μi(x), are usually chosen in such 

a way that no two distinct sequences will yield the same 

generating function. 
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Ex.  μi(x) :  1, 1 + x, 1 − x, 1 + x2, 1 − x2, …, 1 + xr,  

 1 − xr, … 

 ai :  3, 2, 6, 0, 0, … 

 ⇒  F(x) = 3 + 2(1 + x) + 6(1 − x) = 11 − 4x 

ai :  1, 3, 7, 0, 0, … 

⇒  F(x) = 1 + 3(1 + x) + 7(1 − x) = 11 − 4x 

 So,  1, 1 + x, 1 − x, 1 + x2, 1 − x2, …  cannot be used  

 as indicator functions. 

Ex.  μi(x) :  1, cosx, cos2x, …, cosrx, … 

ai :  1, w, w2, …, wr, … 

⇒  F(x) = 1 + wcosx + w2cos2x + … + wrcosrx + … 
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The most usual and useful form of μi(x) is xi
 :  

 F(x) = a0 + a1x + a2x2
 + … + aixi + …   

 for the sequence (a0, a1, a2, …, ai, …).  
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Ex.  (1 + x)n = (
0
n) + ( 1

n)x + ( 2
n)x2

 + … + (n
n)xn. 

 (1 + x)n is the generating function for  (
0
n), (

1
n),  

 (
2
n), …, (

n
n), 0, 0, 0, … 

Ex.  (1 − x n+1) = (1 − x)(1 + x + x2
 + … + xn).  

 (1 − x n+1)/(1 − x) is the generating function for the  

 sequence  

1

1...,,1,1,1
+n

,  0,  0,  0,  … 
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Ex. 1
1− x

 = 1 + x + x2
 + x3

 + … 

2

2

2
2 3

3

 1 ...    
1 1                       

1         
     

              
      

                    
       

                             

x x
x

x
x
x x

x
x x

x

+ + +
−

−

−

−  

 
1

1− x
 is the generating function for the sequence  

 1, 1, 1, 1, …  
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d
dx

1
1− x

 = 2

1
(1 )− x

 = 1 + 2x + 3x2
 + 4x3

 + … 

2(1 )−
x
x

 is the generating function for  0, 1, 2, 3, …  

d
dx ( )21

x
x−

 = 
( )3

1
1

x
x

+
−

 = 1 + 22x + 32
 x2

 + 42x3
 + … 

( )
( )3

1
1

x x
x
+
−

 is the generating function for  02, 12, 22, 32, 42, … 
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Let  f(x) = a0 + a1x + a2x2
 + a3x3

 + … 

f(x)/(1 − x) =  (a0 + a1x + a2x2
 + a3x3

 + …)(1 + x + x2
 + x3

 + …) 

 =  (a0) + (a0 + a1)x + (a0 + a1 + a2)x2
 + … 

f(x)/(1 − x) is the generating function for  a0, a0 + a1,  

a0 + a1 + a2, … 

Ex. ( )
( )3

1
1

x x
x
+
−

 = 02
 + 12x + 22x2

 + 32x3
 + 42x4

 + … 

( )
( )4

1
1

x x
x
+
−

 is the generating function for  02, 02
 + 12,  

02
 + 12

 + 22, … 
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When n ∉ Z +, (1 + x)n = 1 + ∑
∞

=1r
(

r
n)xr , where 

(
r
n) = (n)(n − 1)(n − 2) … (n − r + 1)/r!.  

(derivable from Maclaurin series expansion) 

Ex.  (1 − x)−1  

 = 1 + ∑
∞

=1r
(

r
1− )(−x)r 

 = 1 + ∑
∞

=1r
[(−1)(−1−1)(−1 −2) … (−1−r+1)/r!](−1)rxr 

 = 1 + ∑
∞

=1r
[(−1)(−2)(−3) … (−r)/r!](−1)rxr 

 = 1 + ∑
∞

=1r
xr 

 = 1 + x + x2
 + x3

 + … 
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Ex.  Let m ∈ Z +. 

 (1 + x)−m  

=  1 + ∑
∞

=1r
(

r
m− )xr 

= 1 + ∑
∞

=1r
((−m)(−m−1)(−m−2) … (−m−r+1)/r!)xr 

= 1 + ∑
∞

=1r
(− 1)r(

r
rm 1−+ )xr.  
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Ex.  (1 + 3x)−1/3  =  1 + ∑
∞

=1r
((−1/3)(−4/3)(−7/3) …  

  ((−3r + 2)/3)/r!)(3x)r 

 = 1 + ∑
∞

=1r
((−1)(−4)(−7) … (−3r + 2)/r!)xr. 

Ex.  Determine the coefficient of x15 in 

F(x) = (x2
 + x3

 + x4
 + …)4. 

F(x)  =  (x2(1 + x + x2
 + …))4 

 = x8(1 + x + x2
 + …)4 

 = x8(1/(1 − x))4 

 = x8(1 − x)−4. 

The answer is the coefficient of x7 in (1 − x)−4, which is  

 (
7
4− )(−1)7 = 120.  
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Ex.  In how many ways can we select, with repetitions  

allowed, r objects from n distinct objects? 

The problem is equivalent to finding the coefficient of xr in 

F(x)  =  (1 + x + x2
 + … + xr)n = (1 + x + x2

 + … + xr
 + …)n  

   =  (1/(1 − x))n  

 = (1 − x)−n  

 = 1 + ∑
∞

=1i
(

i
n− )(− x)i  

 = 1 + ∑
∞

=1i
(

i
in )1( −+ ) xi, 

which is  (
r
rn 1−+ ) = H(

r
n). 
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Ex.  Compute the number of integer solutions for  

x1 + x2 + x3 + x4 = 24,  3 ≤ xi ≤ 8,  i = 1, 2, 3, 4. 

The answer is the coefficient of x24 in 

F(x) = (x3
 + x4

 + x5
 + x6

 + x7
 + x8)4 

 = x12(1 + x + x2
 + x3

 + x4
 + x5)4 

 = x12((1 − x6)/(1 − x))4 

 = x12(1 − x6)4
 (1 − x)−4 

 = x12(1 + (1
4)(− x6) + ( 2

4 )(− x6)2
 + (

4
3

)(− x6)3
 + 

  (4
4
)(− x6)4)(1 + ( 1

4− )(− x) + (
2
4− )(− x)2

 + …), 

which is  1 × (− 1)12(
12

4− ) + ((− 1)(
1
4))((− 1)6(

6
4− )) + ( 2

4 )×1  

 = 125. 
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Ex. Determine the coefficient of x8 in  

F(x) = 
( )( )2

1
3 2x x− −

.  

F(x)  =  
( )( )2

1
3 2x x− −

 = 1
3x −  − 

1
2x −  − ( )2

1
2x −

  

 = ( 1
3
− )(1 − 3

x )−1
 + ( 1

2
)(1 − 2

x )−1
 + ( 1

4
− )(1 − 2

x )−2 

  ((1 − x)−1 = 1 + x + x2
 + x3

 + …) 

 =  ( 1
3
− ) ∑

∞

=0i
(

3
x )i  +  ( 1

2
) ∑
∞

=0i
(

2
x )i  +  

   ( 1
4
− )(1 + ( 1

2− )(−
2
x ) + (

2
2− )(

2
x− )2 +  …). 

The coefficient of x8 is  ( 1
3
− )( 1

3
)8

 + ( 1
2

)( 1
2

)8+ ( 1
4
− )(

8
2− )( 1

2
− )8.  
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Ex.  In how many ways can a police captain distribute 24 

 rifle shells to four police officers so that each gets at 

 least three shells, but not more than eight? 

 The problem is equivalent to finding the coefficient  

 of x24 in F(x) =  (x3
 + x4

 + x5
 + x6

 + x7
 + x8)4 

  = x12(1 + x + x2
 + x3

 + x4
 + x5)4, 

 which is equal to 125, as computed in the example  

of page 59. 
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set of solutions of 
c1 + c2 + c3 + c4 + c5 = 14, 

c1, c5≥ 0 
c2, c3, c4≥ 1

set of solutions to 
c1 + c2 + c3 + c4 + c5 = 14, 

c1, c5 ≥ 0 
c2, c3, c4 ≥ 2 

 

set of solutions of 
c1 + c2 + c3 + c4 + c5 = 14, 

c1, c5≥ 0 
c2, c3, c4≥ 1

set of solutions of 
c1 + c2 + c3 + c4 + c5 = 14, 

c1, c5≥ 0 
c2, c3, c4≥ 1

set of solutions of 
c1 + c2 + c3 + c4 + c5 = 14, 

c1, c5≥ 0 
c2, c3, c4≥ 1

set of solutions of 
c1 + c2 + c3 + c4 + c5 = 14, 

c1, c5≥ 0 
c2, c3, c4≥ 1 

set of solutions to 
c1 + c2 + c3 + c4 + c5 = 14, 

c1, c5 ≥ 0 
c2, c3, c4 ≥ 1 

Ex. Determine how many four-element subsets of  

S = {1, 2, …, 15} contain no consecutive integers. 

Let {a, b, c, d} (a < b < c < d) be an arbitrary  

four-element subset. 

1      a        b      c      d          15 

c1 = a − 1  c2 = b − a  c3 = c − b  c4 = d − c  c5 = 15 − d 

c1 + c2 + c3 + c4 + c5 = 14 

 

      

 

one-to-one o  

 

 

 

set of four-element 
subsets 

one-to-one 
correspondence 

set of required 
subsets 

one-to-one 
correspondence 

one-to-one 
correspondence 

one-to-one 
correspondence 

one-to-one 
correspondence 

one-to-one 
correspondence 

one-to-one 
correspondence 
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The answer is the coefficient of  x14
  in  

F(x) =  (1+x+x2+x3+ … +x8)2 (x2+x3+x4+ … +x10)3
 

 =  x6(1+x+x2+x3+ … +x8)5  

 =  x6(1+x+x2+x3+ … +x8+ …)5 

 =  x6(1−x)−5, 

which is  (
8
5− )(− 1)8 = 495.  
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• Partitions of Integers     

Let p(n) denote the number of partitions of a positive integer 

n into positive summands, disregarding their order. 

p(1) = 1: 1. 

p(2) = 2: 2, 1 + 1. 

p(3) = 3: 3, 2 + 1, 1 + 1 + 1. 

p(4) = 5: 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1. 

p(10) is equal to the coefficient of x10 in  

 F(x) = (1 + x + x2
 + x3

 + …) × (1 + x2
 + x4

 + x6
 + …) × 

   (1 + x3
 + x6

 + x9
 + …) ×  …  × (1 + x10

 + x20
 + …) 

  = −
1

1 x  × 2
1

1 x−  × − 3
1

1 x  ×  …  × 10
1

1 x−  . 
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In general,  p(n) is equal to the coefficient of xn in  

F(x) = ∏
= 1

1

1 i
i x

∞

−
. 

Although it is difficult to compute p(n) from F(x), it is  

still possible to compute the number of some restricted  

partitions on n by the aid of generating functions. 
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Ex. Find the generating function for the number of ways  

 an advertising agent can purchase n minutes, if time  

 slots of 30, 60, and 120 seconds are available. 

 Let 30 seconds be one time unit.  Then the answer is the 

 number of nonnegative integer solutions to  

 a + 2b + 4c = 2n, 

 (equivalently, the number of partitions of 2n into 1’s, 2’s  

 and 4’s), which is equal to the coefficient of x2n in 

 F(x) = (1 + x + x2
 + …) × (1 + x2

 + x4
 + …) × 

   (1 + x4
 + x8

 + …) 

  = −
1

1 x  × 2
1

1 x−  × − 4
1

1 x
. 
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Let pd(n) (p0(n)) be the number of partitions of n whose 

summands are distinct (odd). 

For example, there are five partitions of 4:  

 4,  3 + 1,  2 + 2,  2 + 1 + 1,  1 + 1 + 1 + 1, 

where  pd(4) = 2  (i.e., 4, 3 + 1),  and  p0(4) = 2   (i.e., 3 + 1 and 

1 + 1 + 1 + 1). 
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pd(n) is equal to the coefficient of  xn
  in  

 F(x) = (1 + x)(1 + x2)(1 + x3) … 

  = )∏
= 1

(1 + i

i
x

∞
, 

where we define pd(0) = 1. 

p0(n) is equal to the coefficient of  xn
  in  

 F(x) = (1 + x + x2
 + x3

 + …) × (1 + x3
 + x6

 + …) ×  

   (1 + x5
 + x10

 + …) × (1 + x7
 + x14

 + …) ×  … 

  = −
1

1 x  × 3
1

1 x−  × − 5
1

1 x  × − 7
1

1 x  ×  …, 

where we define po(0) = 1. 
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Ferrers graphs :  a dot representation of partitions 

 

The number of dots per row in a Ferrers graph does not 

increase as we go from the top to the bottom. 

The left Ferrers graph represents  14 = 4 + 3 + 3 + 2 + 1 + 1,  

and the right Ferrers graph represents  14 = 6 + 4 + 3 + 1; 

both are the transposition of each other,  because one can be 

obtained from the other by interchanging rows and columns. 

There is a one-to-one correspondence between a Ferrers  

graph and its transposition. 



 70

⇒ the number of partitions of n into m summands 

 is equal to the number of partitions of n whose 

 maximal summand is m. 

 (m = 4 or 6 for the example above.) 
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• Exponential Generating Functions 

F(x) = a0μ0(x) + a1μ1(x) + a2
( )
!

2

2
xμ

 + a3
( )
!

3

3
xμ

 + … +  

ar
( )
!

r x
r

μ
 + … 

is called the exponential generating function of the  

sequence (a0, a1, a2, …, ar, …),  where  μ0(x),  μ1(x),  

μ2(x),  …,  μr(x),  …  are the indicator functions. 

When μi(x) = xi,   

F(x) = a0 + a1x + a2
!

2

2
x

 + a3
!

3

3
x

 + … + ar
!

rx
r

 + … 
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Ex.  (1+x)n =  p(n, 0) + p(n, 1)x + p(n, 2)
!

2

2
x

 + p(n, 3)
!

3

3
x

 + 

            …  + p(n, n)
!

nx
n

. 

 (1+x)n is the exponential generating function of  

 p(n, 0), p(n, 1), p(n, 2), …, p(n, n), …  

Ex.  ex = 1 + x + 
!

2

2
x

 + 
!

3

3
x

 + 
!

4

4
x

 + … 

 (derivable from Maclaurin series expansion) 

 ex is the exponential generating function of  

 1, 1, 1, 1, 1, …  
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Ex. 
2

x xe e−+
 = 1 + 

!

2

2
x

 + 
!

4

4
x

 + …   

 
2

x xe e−+  is the exponential generating function of  

 1, 0, 1, 0, 1, … 

Ex. 
2

x xe e−−
 = x + 

!

3

3
x

 + 
!

5

5
x

 + … 

 
2

x xe e−−  is the exponential generating function of  

 0, 1, 0, 1, 0, … 
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Let  x p/p!  indicate that there are  p  identical objects to 

be permuted.  

Then, the number of ways to permute p + q objects,  where 

p of them is of one kind and q of them is of another kind, 

can be expressed as  

             
!

px
p

 ⋅ 
!

qx
q

  =  ((p + q)!/p!q!) ⋅ ( )!

p qx
p q

+

+
 

where the coefficient of (p + q)!/p!q! is the answer.  

Similarly,  the number of ways to permute p + q + r objects 

of three kinds can be expressed as 

!

px
p

 ⋅ 
!

qx
q

 ⋅ 
!

rx
r

  =  ((p + q + r)!/p!q!r!) ⋅ ( )!

p q rx
p q r

+ +

+ +
. 
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Ex.  The number of ways to permute one, two, three, 

four, and five of five objects, with two of one kind and 

three of another kind, can be expressed as  

 (1 + 
!1

x
 + 

!

2

2
x ) ⋅ (1 + 

!1
x

 + 
!

2

2
x

 + 
!

3

3
x )   

(zero or one or two of the objects of the first kind) 

and (zero or one or two or three of the objects of 

the second kind) are permuted.   

 (1 + 
!1

x
 + 

!

2

2
x ) ⋅ (1 + 

!1
x

 + 
!

2

2
x

 + 
!

3

3
x ) 

 = 1 + (
!

1
1

+
!

1
1

)x + (
! !
1

1 1
+

!
1
2

+
!

1
2

)x2 + (
! !
1

1 2
+

! !
1

1 2
+

!
1
3

)x3 + 

(
! !
1

1 3
+

! !
1

2 2
)x4 + (

! !
1

2 3
)x5 
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(
! !
1

1 3
+

! !
1

2 2
)⋅x4

  =  ( !
! !
4

1 3
+ !

! !
4

2 2
)⋅

!

4

4
x

  =  (4 + 6)⋅
!

4

4
x . 

⇓ 

1.  There are 4 ways to permute four objects, with one 

of the first kind and three of the second kind. 

2.  There are 6 ways to permute four objects, with 

two of each kind. 

3. There are 4 + 6 ways to permute four of the five 

objects.  
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Ex.  The number of r-permutations of n distinct 

objects with unlimited repetitions is nr. 

 (1 + x + 
!

2

2
x

 + 
!

3

3
x

 +  …  + 
!

rx
r

)n  

 = (1 + x + 
!

2

2
x

 + 
!

3

3
x

 +  …)n  

 = enx 

 = 
∞
∑
=0r

( )
!

rnx
r

  

 = 
∞
∑
=0r

nr

!

rx
r

.  



 78

Ex.  In how many ways can four of the letters from  

ENGINE be arranged ? 

selections of four          the number of  
letters               permutations 

 EENN 4!/2!2! 
 EEGN 4!/2!  
 EEIN 4!/2! 
 EEGI 4!/2! 
 EGNN 4!/2! 
 EINN 4!/2! 
 GINN 4!/2! 
 EIGN 4! 

 
(“E”, “N”)   (“G”, “I”) 

F(x) = (1 + x + 
!

2

2
x )2

 ⋅ (1 + x)2. 

The coefficient of 
!

4

4
x

 in F(x) is  

4!/2!2! + 4!/2! + 4!/2! + 4!/2! + 4!/2! + 4!/2! + 4!/2! + 4!. 
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Ex.  A ship carries 48 flags, 12 each of red, white, 

blue and black. Twelve of these flags are placed on  

a vertical pole in order to communicate a signal to 

other ships. How many of these signals use an even 

number of blue and an odd number of black flags ?  

F(x)  = (1 + x + 
!

2

2
x

 + 
!

3

3
x

 +  …)2
 ⋅ (1 + 

!

2

2
x

 + 
!

4

4
x

 +  …) ⋅  

  (x + 
!

3

3
x

 + 
!

5

5
x

 +  …) 

 =  (ex)2
 ⋅ (

2

x xe e−+ )⋅ (
2

x xe e−− ) 

=  ( 1
4

) ⋅ (e2x) ⋅ (e2x
 − e−2x) 

=  ( 1
4

) ⋅ (e4x
 − 1) 

=  1
4

 (
i

∞
∑
=1

( )
!

4 ix
i

). 

The coefficient of 
!

12

12
x

 in F(x) is 411.  
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Ex.  A company hires 11 new employees. Each of 

these employees is to be assigned to one of four 

subdivisions with each subdivision getting at least  

one new employee. In how many ways can these 

assignments be made ?  

E :  {e1, e2, …, e11} 

D :  {d1, d2, d3, d4} 

f :  E → D 

How many onto functions f are there ? 

F(x)  =  (x + 
!

2

2
x

 + 
!

3

3
x

 + 
!

4

4
x

 +  …)4 = (ex
 − 1)4 

 =  e4x
 − 4e3x

 + 6e2x
 − 4ex

 + 1. 

The coefficient of 
!

11

11
x

 in F(x) is  

411
 − 4 ⋅ 311

 + 6 ⋅ 211
 − 4 ⋅ 111. 

(This problem can be solved as well with the principle 

of inclusion and exclusion.)  
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Combinations  →  Ordinary Generation Functions 

Permutations  →  Exponential Generation Functions 

 

                (do Exercise  # 2)  



 82

Recurrence Relations 

• Linear Recurrence Relations   

Let k ∈ Z + and cn(≠0), cn−1, cn−2, …, cn−k(≠0) be constants. 

If an is a discrete numeric function, then 

cnan + cn−1an−1 + cn−2an−2 + … + cn−kan−k = f(n),  n ≥ k, 

is a linear recurrence relation with constant coefficients 

of order k. The relation is homogeneous if f(n) = 0, and 

nonhomogeneous if f(n) ≠ 0. 
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•  First-Order Linear Homogeneous 
Recurrence Relations with Constant 
Coefficients  

an = can−1,  n ≥ 1,  c :  constant. 

an = can−1 

= c(can−2) 

= c2(can−3) 

= c3(can−4) 

= c4(can−5) 

     .      .      . 

= cn−1(ca0) 

= cn
 ⋅ a0. 
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Ex.  Solve an = 7an−1, n ≥ 1, a2 = 98. 

an = 7an−1 

= 7(7an−2) 

= 72(7an−3) 

     .      .      . 

= 7n−3(7a2) 

= 7n−2
 ⋅ 98 

= 2 ⋅ 7n,  n ≥ 0. 
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Ex.  Find a12 if 2
+1na  = 

25 na ,  an > 0,  n ≥ 0,  a0 = 2. 

Let bn = an
2. 

bn+1 = 5bn,  n ≥ 0,  b0 = 4. 

bn = 5n
 ⋅ b0 = 4 ⋅ 5n. 

Therefore,  an = nb  = 2 ⋅ ( 5 )n,  n ≥ 0. 

 a12 = 2 ⋅ ( 5 )12 = 31250.   
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• Second-Order Linear Homogeneous 
Recurrence Relations with Constant 
Coefficients  

 cnan + cn−1an−1 + cn−2an−2 = 0,  n ≥ 2         (1) 

The solution of (1) has the form  

an = c ⋅ rn,                 (2) 

where c ≠ 0 and r ≠ 0. 

Substituting (2) into (1), we have 

cn ⋅ (c ⋅ rn) + cn−1 ⋅ (c ⋅ r n−1) + cn−2 ⋅ (c ⋅ r n−2) = 0. 

⇒  cn ⋅ r2
 + cn−1 ⋅ r + cn−2 = 0            (3) 

(3) is called the characteristic equation, and its roots, 

denoted by r1 and r2, are called the characteristic roots.   
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Case 1.  r1 ≠ r2 are real numbers.   

Ex.  Solve an + an−1 − 6an−2 = 0,  n ≥ 2,  a0 = 1,  a1 = 2. 

Let  an = c ⋅ rn.  

⇒  c ⋅ rn
 + c ⋅ r n−1

 − 6c ⋅ rn−2 = 0 

characteristic equation :  r2
 + r − 6 = 0 

characteristic roots :  r1 = 2,  r2 = −3 

⇒  an = c1 ⋅ 2n
 + c2 ⋅ (−3)n

  is the general solution. 

c1 and c2 can be determined by boundary conditions. 

a0 = 1 :  c1 + c2 = 1 

a1 = 2 :  2c1 − 3c2 = 2 

⇒  c1 = 1,  c2 = 0 

Therefore,  an = 2n is the unique solution. 
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Ex.  Solve the Fibonacci relation :  

Fn+2 = Fn+1 + Fn,  n ≥ 0,  F0 = 0,  F1 = 1. 
Let  Fn = c ⋅ rn. 

characteristic equation :  r2
 − r − 1 = 0   

characteristic roots :  r1 = 1 5
2
+ ,  r2 = 1 5

2
−  

general solution :  Fn = c1 ⋅ ( 1 5
2
+ )n

 + c2 ⋅ ( 1 5
2
− )n 

F0 = 0 :  c1 + c2 = 0 

F1 = 1 :  c1 ⋅ 1 5
2
+

 + c2 ⋅ 1 5
2
−  = 1 

⇒  c1 = 1
5

,  c2 = 1
5
−  

The unique solution is Fn = 1
5
((1 5

2
+ )n

 − ( 1 5
2
− )n). 
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Ex.  For n ≥ 0, let S = {1, 2, …, n} (S = ∅ if n = 0), and 

let an denote the number of subsets of S that contain 

no consecutive integers. Find and solve a recurrence 

relation for an . 

The subsets of S that contain no consecutive integers 

are composed of two disjoint parts : 

Part 1.  those subsets containing n 

an−2 subsets are included in this part 

Part 2.  those subsets not containing n 

an−1 subsets are included in this part. 

Thus,  an = an−1 + an−2  with  a0 = 1,  a1 = 2. 

⇒ an = Fn+2 = 
1
5
((1 5

2
+ )n+2

 − ( 1 5
2
− )n+2) 

(F0 = 0, F1 = 1, F2 = 1, F3 = 2, … 

  a0 = 1, a1 = 2, … ) 
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Ex.  Find a recurrence relation for the number an of 

binary sequences of length n without consecutive 0’s. 

Let ( )0
na ( ( )1

na ) :  number of binary sequences of length 

n that contain no consecutive 0’s and  

end with 0 (1). 

an = ( )0
na  + 

( )1
na  = an−2 + an−1,  n ≥ 2,  a1 = 2,  a2 = 3 

⇒  an = Fn+2 = 1
5
((1 5

2
+ )n+2

 − ( 1 5
2
− )n+2). 
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Ex.  In how many ways can a 2 × n chessboard (refer to the  

 left graph for n = 4) be covered by n 2 × 1 or 1 × 2 (refer 

 to the middle graph) tiles?  

  
 Let an be the answer,  where a1 = 1 and a2 = 2 (refer to  

 the right graph). 

 Considering the rightmost column of the chessboard, 

 we have  an = an−1 + an−2  for n ≥ 3.  

⇒ an = Fn+1 = 1
5
((1 5

2
+ )n+1

 − ( 1 5
2
− )n+1). 
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Ex.  In how many ways can n symbols from {0, 1, 2, …, 9} 

 ∪ {+, ∗} form an arithmetic expression, e.g., 2+13∗5? 

 (a leading + is not allowed) 

 Let an be the answer. 

 a1 = 10  (i.e., 0, 1, 2, …, 9). 

 a2 = 100  (i.e., 00, 01, …, 09, 10, 11, …, 99). 

 Consider n ≥ 3, and let xy be the rightmost two symbols, 

 where y ∈ {0, 1, …, 9}. 

 If  x ∈ {0, 1, …, 9},  then 

  an = 10 × an−1. 

 If  x ∈ {+, ∗},  then 

  an = 20 × an−2.  

Therefore,  an = 10an−1 + 20an−2. 

⇒  an = 5
3

((5 + 3 5 )n
 − (5 − 3 5 )n). 
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Case 2.  r1, r2 are complex numbers. 

r1 = x + iy = 2 2x y+ (cosθ + isinθ) 

r2 = x − iy = 2 2x y+ (cosθ − isinθ) 

θ = tan−1 y
x

 

If  z = r(cosθ ± isinθ), then  

zn = rn(cosnθ ± isinnθ). 

r1=(x, y)

θ 
x 

y 

X

Y 
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Ex.  1+ 3 i = 2(cos(π/3) + isin(π/3)) 

(1+ 3 i)10 =  210(cos(10π/3) + isin(10π/3))  

 =  210(cos(4π/3) + isin(4π/3)) 

 =  210( 1
2
− − i 3

2
) 

 =  (−29)(1 + 3 i)      
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Ex.  Solve an = 2(an−1 − an−2),  n ≥ 2,  a0 = 1,  a1 = 2. 

Let  an = c ⋅ rn. 

r2
 − 2r + 2 = 0 

⇒   r1 = 1 + i = 2 (cos(π/4) + isin(π/4)) 

 r2 = 1 − i = 2 (cos(π/4) − isin(π/4)) 

general solution :   

an  =  c1 ⋅ r1
n

 + c2 ⋅ r2
n 

 =  c1 ⋅ ( 2 )n(cos(nπ/4) + isin(nπ/4)) +  

  c2 ⋅ ( 2 )n(cos(nπ/4) − isin(nπ/4)) 

 =  ( 2 )n(k1cos(nπ/4) + k2sin(nπ/4)), 

where  k1 = c1 + c2  and  k2 = (c1 − c2)i. 

a0 = 1 :  k1cos0 + k2sin0 = 1 

a1 = 2 :  2 (k1cos(π/4) + k2sin(π/4)) = 2 

⇒  k1 = 1,  k2 = 1  (c1 = (1 − i)/2,  c2 = (1 + i)/2) 

⇒ an = ( 2 )n(cos(nπ/4) + sin(nπ/4)) 
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Ex. Find the value of Dn, the n × n determinant given by 

 ,  where  b ∈ R+. 

 Let an be the answer,  where  a1 = |b| = b,  a2 =       = 0, 

 and  a3 =       = − b3. 

 Expanding Dn by the first row,  we have  

 an =  

0 0 ... 0 0 0 0 0 0 ... 0 0 0 0
0 ... 0 0 0 0 0 0 ... 0 0 0 0

0 ... 0 0 0 0 0 ... 0 0 0 0
. . . . ... . . . . . . . . ... . . . .
0 0 0 0 ... 0 0 0 0 0 ... 0
0 0 0 0 ... 0 0 0 0 0 ... 0
0 0 0 0 ... 0 0 0 0 0 0 ... 0 0

b b b b
b b b b b

b b b b b b
b b

b b b b b b
b b b b b b

b b b b

× − ×  

  = b × an−1 − b2
 × an−2 (expand the right determinant 

    by the first column). 

⇒ an =  bn
 × (cos(nπ/3) + 

1
3

 × sin(nπ/3)). 
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Case 3.  r1 = r2 are real numbers.  

Let r be the characteristic root (r is called a root of  

multiplicity 2). 

general solution :  an = c1 ⋅ rn
 + c2 ⋅ nrn 
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Ex.  Solve an+2 = 4an+1 − 4an,  n ≥ 0,  a0 = 1,  a1 = 3.  

Let  an = c ⋅ rn.  

r2
 − 4r + 4 = 0 

⇒  r = 2 (a root of multiplicity 2) 

general solution :  an = c1 ⋅ 2n
 + c2 ⋅ n2n 

a0 = 1 :  c1 = 1 

a1 = 3 :  2c1 + 2c2 = 3 

⇒  c1 = 1,  c2 = 1
2

 

⇒  an = 2n
 + n2n−1   
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•  Linear Homogeneous Recurrence 
  Relations of Higher Order with 
  Constant Coefficients  

 

Let  an = crn. 

1.  If all characteristic roots r1, r2, …, rk are distinct,  

 then the general solution has the following form 

     an = c1r1
n

 + c2r2
n

 + … + ckrk
n. 

2. If r is a characteristic root of multiplicity m, then  

 the general solution includes the following as a  

 component  

 c0rn
 + c1nrn

 + c2n2rn
 + … + cm−1nm−1rn. 
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Ex.  Solve 2an+3 = an+2 + 2an+1 − an,  n ≥ 0,  a0 = 0,   

 a1 = 1,  a2 = 2. 

Let  an = c ⋅ rn. 

2r3
 − r2

 − 2r + 1 = 0 

⇒  r1 = 1
2

,  r2 = 1,  r3 = −1 

general solution :  an = c1( 1
2

)n
 + c21n

 + c3(−1)n 

a0 = 0 :  c1 + c2 + c3 = 0 

a1 = 1 :  
1
2

c1 + c2 − c3 = 1 

a2 = 2 :  
1
4

c1 + c2 + c3 = 2 

⇒  c1 = 8
3
− ,  c2 = 5

2
,  c3 = 1

6
 

⇒  an = ( 8
3
− )( 1

2
)n

 + ( 1
6

)(−1)n
 + 5

2
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Ex.  Solve an + 6an−1 + 12an−2 + 8an−3 = 0,  n ≥ 3,  a0 = 1,  

 a1 = −2,  a2 = 8. 

Let  an = c ⋅ rn. 

r3
 + 6r2

 + 12r + 8 = 0 

⇒  r = −2 (a root of multiplicity 3) 

general solution :  an = c1(−2)n
 + c2n(−2)n

 + c3n2(−2)n  

a0 = 1 :  c1 = 1 

a1 = −2 :  −2c1 − 2c2 − 2c3 = −2 

a2 = 8 :  4c1 + 8c2 + 16c3 = 8 

⇒  c1 = 1,  c2 = 1
2
− ,  c3 = 1

2
 

⇒ an = (−2)n
 −

1
2

n(−2)n
 + 1

2
n2(−2)n       
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Ex. Solve an − 4an−1 + 5an−2 − 2an−3 = 0,  n ≥ 3,  a0 = 1,  

 a1 = 3,  a2 = 6. 

Let  an = c ⋅ rn. 

r3
 − 4r2

 + 5r − 2 = 0 

⇒   r1 = 1 (a root of multiplicity 2) 

 r2 = 2 

general solution :  an = (c1(1)n
 + c2n(1)n) + c3(2)n  

a0 = 1 :  c1 + c3 = 1 

a1 = 3 :  c1 + c2 + 2c3 = 3 

a2 = 6 :  c1 + 2c2 + 4c3 = 6 

⇒  c1 = 0,  c2 = 1,  c3 = 1 

⇒ an = n + 2n       
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Ex.  In how many ways can a 2 × n chessboard be covered  

 by 1-square or 3-square tiles (refer to the left graph)? 

 

 Let an be the answer,  where a1 = 1, a2 = 5 (refer to  

 the right graph), and a3 = 11. 

 Consider n ≥ 4. 

 When the rightmost column is covered by two 1-square 

  tiles,  we have  an = an−1.  

 When the rightmost column is covered by one 1-square 

  tile and one 3-square tile,  we have  an = 2an−2. 
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When  the rightmost column is covered by one 3-square 

tile,  we have   

 an = 2an−2,  if the second rightmost column is covered 

  by one 1-square tile and one 3-square tile; 

 an = 2an−3,  if the second rightmost column is covered 

  by two 3-square tiles. 

 Therefore,  an = an−1 + 4an−2 + 2an−3. 

⇒ an = (− 1)n + ( 1
3

)(1 + 3 )n
 + ( −1

3
)(1 − 3 )n. 

(do Exercise  # 3) 
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•  Linear Nonhomogeneous Recurrence  
 Relations  

cnan + cn−1an−1 + cn−2an−2 + … + cn−kan−k = f(n),  n ≥ k,  

f(n) ≠ 0,  ci (n − k ≤ i ≤ n) constant. 

an = h
na  + 

p
na  

h
na  :   the homogeneous solution, which satisfies the 

  equation with f(n) = 0, i.e., 

 cn
h
na + cn−1 1

h
na − + cn−2 2

h
na − +  …  + cn−k

h
n ka −  = 0 

p
na  :   a particular solution to the equation, i.e., 

 cn
p
na + cn−1 1

p
na − + cn−2 2

p
na − +  …  + cn−k

p
n ka − = f(n) 
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There is no general way to find 
p
na .  

However,  when f(n) is in a relatively simple form,  

p
na  can be determined by method of undetermined  

coefficients  (i.e., using the form of f(n) to suggest a  

form for 
p
na ). 
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Ex.  Solve an + 2an−1 = n + 3,  a0 = 3.  

Let  
p
na  =  cn + d. 

(cn + d) + 2(c(n − 1) + d) = n + 3 

⇒  3cn + (3d − 2c) = n + 3 

⇒  3c = 1,  3d − 2c = 3 

⇒  c = 
1
3

,  d = 
11
9

 

p
na  = 

1
3

n + 
11
9

 

h
na  = k(−2)n 

an = h
na  + 

p
na  = k(−2)n

 + 
1
3

n + 
11
9

 

a0 = 3 :  k + 
11
9

 = 3  ⇒  k = 
16
9

 



 108

Ex.  Solve  an − an−1 = n − 1,  n ≥ 1,  a1 = 0. 

First,  try p
na  = cn + d. 

(cn + d) − (c(n − 1) + d) = n − 1  

⇒  c = n − 1,  a contradiction 

Then,  try p
na  = cn2

 + dn + e. 

(cn2
 + dn + e) − (c(n − 1)2

 + d(n − 1) + e) = n − 1 

⇒  2cn − c + d = n − 1 

⇒  c = 
1
2

,  d = 
1

2
−

 

p
na  = 

1
2

n2
 − 

1
2

n + e = 
1
2

n2
 − 

1
2

n  (let  e = 0) 

h
na = k(1)n = k 

an = h
na  + 

p
na  = k + 

1
2

n2
 − 

1
2

n 

a1 = 0 :  k + 

1
2

 − 

1
2

 = 0  ⇒  k = 0 
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another solution method : 

  an  =  an−1 + (n − 1) 

   =  (an−2 + (n − 2)) + (n − 1) 

=  (an−3 + (n − 3)) + (n − 2) + (n − 1) 

 

   =  a1 + 1 + 2 +  …  + (n − 2) + (n − 1) 

   =  1
2

n(n − 1) 

· · · 
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In general,  

   an  =  an−1 + f(n) 

    =  (an−2 + f(n − 1)) + f(n) 

    =  (an−3 + f(n − 2)) + f(n − 1) + f(n) 

 

    =  a0 +
=1

( )
n

i
f i∑  

For example,  if  f(n) = 3n2,    

   an  =  an−1 + 3n2 

    =  a0 + 
2

=1
3

n

i
i∑  

    =  a0 + 
3
6

(n)(n + 1)(2n + 1) 

· · · 
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Ex.  Solve an − 3an−1 = 5(7n),  n ≥ 1,  a0 = 2.  

h
na  = c(3n). 

Let  p
na  = k ⋅ 7n. 

k ⋅ 7n
 − 3k7n−1 = 5 ⋅ 7n

  ⇒  k = 
35
4

 

an = 
h
na  + 

p
na  = c(3n) + 

35
4
⋅ 7n 

a0 = 2  ⇒  c = 27
4
−  
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Ex.  Solve an − 3an−1 = 5(3n),  n ≥ 1,  a0 = 2. 

h
na  =  c(3n) 

Let  
p
na  =  k ⋅ 3n. 

k ⋅ 3n
 − 3k3n−1 = 5(3n)  ⇒  0 = 5(3n),  a contradiction! 

Let  
p
na  =  kn3n. 

kn3n
 − 3k(n − 1)3n−1 = 5(3n)  ⇒  k = 5 

an = 
h
na  + 

p
na  =  c ⋅ 3n

 + 5n3n
 

a0 = 2  ⇒  c = 2        
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1. First-order relations :   

 If  f(n) = q ⋅ rn,  q, r :  constants,  

 
p
na  = k ⋅ rn if  

h
na  ≠ c ⋅ rn 

  k ⋅ nrn  if  
h
na  = c ⋅ rn

 

2. Second-order relations :   

 If  f(n) = q ⋅ rn,  q, r :  constants,  

 
p
na  =  k ⋅ nrn  if  

h
na  = c1rn

 + c2r1
n

  (r ≠ r1) 

 k ⋅ n2rn  if  
h
na  = c1rn

 + c2nrn 

 k ⋅ rn    else 
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Ex.  Solve an − 4an−1 + 4an−2 = 2n,  n ≥ 2,  a0 = 1,  a1 = 2. 

h
na  = c12n

 + c2n2n 

Let p
na  = kn22n. 

kn22n
 − 4k(n − 1)22n−1

 + 4k(n − 2)22n−2 = 2n
   

⇒  k = 1
2

 

an = h
na  + 

p
na  = c12n

 + c2n2n
 + 

1
2
⋅ n22n 

a0 = 1,  a1 = 2  ⇒  c1 = 1,  c2 = 
−1
2
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Ex. Solve  an+2 − 4an+1 + 3an = −200,  n ≥ 0,  a0 = 3000,   

 a1 = 3300. 

h
na  = c13n

 + c21n = c13n
 + c2. 

If  we let p
na  = k,  then  

k − 4k + 3k = −200,  a contradiction! 

So,  we let p
na  = kn,  and 

k(n + 2) − 4k(n + 1) + 3kn = −200.   

⇒  k = 100. 

Hence,  an = 
h
na  + 

p
na  = c13n

 + c2 + 100n. 

a0 = 3000,  a1 = 3300  ⇒  c1 = 100,  c2 = 2900      
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Summary :   

cnan + cn−1an−1 + … + cn−kan−k = f(n), 

where cn, cn−1, …, cn−k are constants. 

g(n)                     h(g(n)) 

c: constant  co: constant 

nt, t∈z+ co+c1n+ … +ct−1nt−1+ctnt 

rn, r∈R c1rn 

sinαn (α: constant) c1sinαn+c2cosαn 

cosαn c1sinαn+c2cosαn 

ntrn rn(co+c1n+ … +ct−1nt−1+ctnt) 

rnsinαn rn(c1sinαn+c2cosαn)  

rncosαn rn(c1sinαn+c2cosαn) 
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Case 1.  f(n) = q ⋅ g(n),  q : constant. 

 
p
na  = h(g(n))  if g(n) is not included in 

h
na ; 

 ns
 ⋅ h(g(n))  else,  

 where s is the smallest integer so that ns
 ⋅ g(n) 

 is not included in 
h
na .  
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Case 2. f(n) = q1 ⋅ g1(n) + q2 ⋅ g2(n) + … + qk ⋅ gk(n), 

where each qi is a constant and each gi(n)  

is in the class of g(n) (1 ≤ i ≤ k). 

p
na  = h1(n) + h2(n) + … + hk(n)  and 

 hi(n) = h(gi(n))  if gi(n) is not included in 
h
na ;  

 ns
 ⋅ h(gi(n))  else, 

  where s is the smallest integer so that ns
 ⋅ gi(n) 

  is not included in 
h
na . 

For example, if f(n) = 4n2 + 3sin2n and 
h
na  = c0n + c12n,  

  p
na  = (c2

 + c3n + c4n2) + (c5sin2n + c6cos2n). 

If f(n) = 4n2 + 2n and 
h
na  = c0n2

 + c12n
 + c2n2n, then  

  p
na  = (c3

 + c4n + c5n2 + c6n3) + c7n22n. 
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Ex. Consider the following recurrence relation : 

 an+2 − 10an+1 + 21an = f(n),  n ≥ 0.  

h
na  = c13n

 + c27n.  

  f(n) p
na  

  5 k 

 3n2
 − 2 k2n2

 + k1n + k0 

 7(11n) k(11n) 
 6(3n) kn(3n) 
 2(3n) − 8(9n) k1n(3n) + k0(9n) 
 4(3n) + 3(7n) k1n(3n) + k0n(7n) 

In the above, k, k0, k1 and k2 are all constants. 
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Ex. Consider the following recurrence relation : 

 an + 4an−1 + 4an−2 = f(n),  n ≥ 2. 

 h
na  = c1(−2)n

 + c2n(−2)n.  

  f(n) p
na  

  5(−2)n kn2(−2)n
 

 7n(−2)n n2(k1n + k0)(−2)n 
 −11n2(−2)n n2(k2n2

 + k1n + k0)(−2)n 

 In the above, k, k0, k1 and k2 are all constants. 

 When  f(n) = 7n(−2)n,  n induces k1n + k0 in 
p
na ,  and 

 the leading n2 in 
p
na  is to avoid (−2)n and n(−2)n. 
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Ex. The Towers of Hanoi. 

 

 Let an be the minimal number of disk moves required 

 to transfer n disks from peg 1 to peg 3.   

 (a0 = 0, a1 = 1, a2 = 3) 
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The n disks can be transferred as follows. 

1. Transfer top n − 1 disks from peg 1 to peg 2. 

2. Transfer the largest disk from peg 1 to peg 3. 

3. Transfer the n − 1 disks from peg 2 to peg 3. 

 ⇒ an ≤ 2an−1 + 1. 

On the other hand, the transfer of the largest disk takes  

at least one disk move and induces at least two transfers  

of n − 1 disks.  

 ⇒ an ≥ 2an−1 + 1. 

Therefore,  an = 2an−1 + 1. 

⇒ an = 2n
 − 1,  n ≥ 0. 
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Ex. Pauline takes out a loan of S dollars that is to be paid 

  back in T periods of time.  If r is the interest rate per  

 period for the loan,  what (constant) payment P must  

 she make at the end of each period? 

 Let an be the amount still owed at the end of the nth  

 period.  (a0 = S and aT = 0) 

 When  n ≥ 1,  an = an−1 + ran−1 − P. 

⇒ an = (S − P/r)(1 + r)n
 + P/r,  for  0 ≤ n ≤ T. 

Since  aT = 0,  we have  P = Sr(1 − (1 + r)−T)−1. 
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Ex. Find the number of comparisons needed, if a divide &  

 conquer method is used to determine the maximal and  

 minimal numbers of 2n real numbers? 

 Let an be the answer,  where a1 = 1.  

 When  n > 1,  an = 2an−1 + 2. 

⇒ an = (3/2)2n
 − 2. 
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Ex. Find the number an of quaternary sequences of length n 

 having an even number of 1’s. 

 a1 = 3.  Consider n ≥ 2 below. 

 When the rightmost digit is 0 or 2 or 3, 

  an = an−1. 

 When the rightmost digit is 1, the other n − 1 digits 

 should have an odd number of 1’s,  i.e., 

  an = 4n−1
 − an−1. 

 Therefore,  an = 3an−1 + (4n−1
 − an−1) = 2an−1 + 4n−1. 

 ⇒ an = 2n−1
 + 2(4n−1). 
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Ex.  

  

  P0 P1 P2 

 P0 : an equilateral triangle of side length 1. 

 P1 : a polygon obtained by replacing the middle one- 

  third of each side of P0 with a new equilateral  

  triangle of side length 1/3. 

 P2 : a polygon obtained from P1 in a similar way. 

An equilateral triangle of side length s has area ( 3 /4)s2. 
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Let an be the area of Pn,  where   

 a0 = 3 /4;   

 a1 = 3 /4 + 3 × ( 3 /4) × (1/3)2
 = 3 /3;   

 a2 = 3 /3 + 3 × 4 × ( 3 /4) × (1/32)2
 = 10 3 /27. 

 (Pn has 3 × 4n sides each of length 1/3n.)  

⇒ an = an−1 + 3 × 4n−1
 × ( 3 /4) × (1/3n)2

  

  =  an−1 + 1/(4 3 ) × (4/9)n−1 

  = (1/(5 3 ))(6 − (4/9)n−1),  n ≥ 0. 
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Ex. Let Sn = {1, 2, …, n} and ℘(Sn) denote the power set of  

 Sn.  Find the number an of edges in the Hasse diagram  

 for the partial order (℘(Sn), ⊆). 

  

 n = 3 

  

 

  

 a1 = 1,  a2 = 4,  and  a3 = 12  (= 2a2 + 22). 

The Hasse diagram for (℘(Sn), ⊆) contains two Hasse  

diagrams,  one for (℘(Sn−1), ⊆) and the other for  

({{n} ∪ T : T ∈ ℘(Sn−1)}, ⊆),  which are joined with 2n−1  

edges. 

Therefore,  an = 2an−1 + 2n−1. 

 ⇒ an = n2n−1,  n ≥ 1. 
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• Method of Generating Functions  

 c0an + c1an−1 + … + cran−r = f(n)            (1) 

Assume that (1) is valid for n ≥ k. 

Let  A(x) = a0 + a1x + a2x2
 + … + anxn

 + …  denote   

the ordinary generating function of the sequence  

(a0, a1, a2, …, an, …). 

1. Multiply both sides of (1) by xn. 

 (c0an + c1an−1 + … + cran−r)xn = f(n)xn        (2) 

2. Sum both sides of (2) from n = k to ∞. 

∞
∑

n=k
(c0an + c1an−1 + … + cran−r)xn = 

∞
∑

n=k
f(n)xn 

c0

∞
∑

n=k
anxn  +  c1x

∞
∑

n=k
an−1xn−1  +  …  +  

crxr
∞
∑

n=k
an−rxn−r  =  

∞
∑

n=k
f(n)xn 
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c0(A(x) − a0 − a1x − … − ak−1xk−1)  + 

c1x(A(x) − a0 − a1x − … − ak−2xk−2)  +  …  + 

crxr(A(x) − a0 − a1x − … − ak−r−1xk−r−1)  

= 
∞
∑

n=k
f(n)xn                   (3) 

3. Solve (3) for A(x). 

4. Determine the coefficient an of xn in A(x). 
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Ex.  Solve  an − 3an−1 = n,  n ≥ 1,  a0 = 1. 

1.  (an − 3an−1)xn =  nxn 

2. 
1

∞
∑
n=

(an − 3an−1)xn  =  
1

∞
∑
n=

nxn 

 
1

∞
∑
n=

anxn  −  3
1

∞
∑
n=

an−1xn  =  
1

∞
∑
n=

nxn 

(A(x) − a0) − 3xA(x) = 
( )21

x
x−

 

(
( )2

1
1 x−

 = 
d
dx

1
1 x−  =  1 + 2x + 3x2

 +  …)  

3.  A(x)  = 1
1 3x−  + 

( )( )2 1 31 x
x

x −−
 

 =  
( )

7
4 1 3x−  + ( )

1
4 1 x
−
−  + ( )2

1
2 1 x

−
−

 

  (
x−

1
1 3  =  1 + 3x + (3x)2

 + (3x)3
 +  …) 

4.  an = 
7
4

3n
 − 2

n
 − 

3
4

,  n ≥ 0 
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Ex.  Solve  an − 2an−1 = 4n−1,  n ≥ 1,  a0 = 1. 

1.  (an − 2an−1)xn = 4n−1xn 

2.  
1

∞
∑
n=

(an − 2an−1)xn
  = 

1

∞
∑
n=

4n−1xn 

1

∞
∑
n=

anxn
  −  2

1

∞
∑
n=

an−1xn
  = 

1

∞
∑
n=

4n−1xn 

(A(x) − 1) − 2xA(x) = 
1 4

x
x−

 

3.  A(x)  = 
( )

1
2 1 4x−  + ( )

1
2 1 2x−

  

  =  
1
2 n=0

∞
∑ (4x)n

  + 1
2 n=0

∞
∑ (2x)n 

4.  an = 1
2

4n
 + 

1
2

2n = 1
2

4n
 + 2n−1,  n ≥ 0 
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Ex.  Solve  an+2 − 5an+1 + 6an = 2,  n ≥ 0,  a0 = 3,  a1 = 7. 

1.  (an+2 − 5an+1 + 6an)xn+2 = 2xn+2. 

2.  
0

∞
∑

n=
(an+2 − 5an+1 + 6an)xn+2

  = 
0

∞
∑

n=
2xn+2. 

0

∞
∑

n=
an+2xn+2

  −  5
0

∞
∑

n=
an+1xn+2

  +  6
0

∞
∑

n=
anxn+2

   

=  2
0

∞
∑

n=
xn+2. 

(A(x) − a0 − a1x) − 5x(A(x) − a0) + 6x2A(x)  =  −

22
1

x
x

. 

3.  A(x) = −
2

1 3x  + −
1

1 x  =  2
0

∞
∑

n=
(3x)n

  +  
0

∞
∑

n=
xn. 

4.  an = 2(3)n
 + 1,  n ≥ 0. 
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• Nonlinear Recurrence Relations  

There is no general method to solve nonlinear  

recurrence relations. 

Type 1.  bn+1 = b0bn + b1bn−1 +  …  + bn−1b1 + bnb0  (n ≥ 0). 

Let  B(x) = 
0

∞
∑

n=
bnxn

   

be the generating function for (b0, b1, …, bn, …). 

0

∞
∑

n=
bn+1xn+1 = 

0

∞
∑

n=
(b0bn + b1bn−1 +  …  + bn−1b1 + bnb0)xn+1 

B(x) − b0 = xB2(x). 
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⇒ B(x) = 1
2x

(1 ± 01 4− b x ) 

  =  1
2x

(1 ± 
0

∞
∑

n=
0

2 1

nb
n
−
−

(2n

n
)xn)   

(refer to page 489 of Grimaldi’s book) 

Since bn ≥ 0,  

 B(x) = 1
2x

(1 − 
0

∞
∑

n=
0

2 1

nb
n
−
−

(2n

n
)xn) 

  =  1
2x 1

∞
∑
n=

0
2 1

nb
n−

(2n

n
)xn  

⇒ bn =  1
2

(
( )

1
0

2 1 1

nb
n

+

+ −
)(2( 1)

1

n +

n +
) 

  =  
1

0
1

nb
n

+

+
(2n

n
) 
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Ex. Find the number bn of ordered rooted binary trees on 

 n vertices. 

 b0 = 1,  b1 = 1,  b2 = 2,  b3 = 5.   

  

 

 bn = b0bn−1 + b1bn−2 +  …  + bn−2b1 + bn−1b0. 

 

  

  one instance of 

  b8b5 
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Ex. Find the number of distinct outputs that may be  

 generated from the following stack. 

  

 Each output of the stack is a permutation of 1, 2, …, n. 

 When n = 4,  there are 14 permutations that may be 

 generated by the stack. 

 1, 2, 3, 4 2, 1, 3, 4 2, 3, 1, 4 2, 3, 4, 1 
 1, 2, 4, 3 2, 1, 4, 3 3, 2, 1, 4 2, 4, 3, 1 
 1, 3, 2, 4   3, 2, 4, 1 
 1, 3, 4, 2   3, 4, 2, 1 
 1, 4, 3, 2   4, 3, 2, 1 
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Suppose that  x1, …, xi−1, 1, xi+1, …, xn  is a permutation 

 generated by the stack, where 1 ≤ i ≤ n.   

Then, 

 {x1, …, xi−1} = {2, …, i}  and  {xi+1, …, xn} = {i+1, …, n}. 

Let bi be the number of distinct outputs that may be  

generated from the stack with i consecutive integers 

as inputs.   

⇒ bn = b0bn−1 + b1bn−2 +  …  + bn−2b1 + bn−1b0 

 For example,  2, 1, 4, 3  is an instance of  b1b2  and 

 3, 4, 2, 1  is an instance of  b3b0. 
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Type 2.  bn+1 = a0bn + a1bn−1 +  …  + an−1b1 + anb0  (n ≥ 0). 

Let A(x) = 
0

∞
∑

n=
anxn  and  B(x) = 

0

∞
∑

n=
bnxn  

be the generating functions for (a0, a1, …, an, …)  

and (b0, b1, …, bn, …), respectively. 

0

∞
∑

n=
bn+1xn+1 = 

0

∞
∑

n=
(a0bn + a1bn−1 +  …  + an−1b1 + anb0)xn+1 

 B(x) − b0
 = xA(x)B(x). 

If either A(x) or B(x) is known, then the other can be 

obtained.  
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• Recurrence Relations with Two Indices 

Ex.  Find a(n, r), the number of ways we can select, 

with repetition, r objects from n distinct objects b1, 

b2, …, bn.  

Consider object b1. 

1.  a(n − 1, r) of a(n, r) ways do not select b1. 

2.  a(n, r − 1) of a(n, r) ways select b1 at least once. 

⇒  a(n, r) = a(n − 1, r) + a(n, r − 1) 
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Let  fn(x) = 
0

∞
∑
r=

a(n, r)xr
  be the generating function 

for (a(n, 0), a(n, 1), a(n, 2), …). 

1

∞
∑
r=

a(n, r)xr = 
1

∞
∑
r=

(a(n − 1, r) + a(n, r − 1))xr
 

fn(x) − a(n, 0) = (fn−1(x) − a(n − 1, 0)) + xfn(x) 

Since  a(n, 0) = 1  for n ≥ 0  and  a(0, r) = 0  for r > 0, 

fn(x) = ( )1
1
nf x

x
−
−

 

 = 
( )

1
1 nx−

. 

So,  a(n, r)  is  (
−n

r
)(−1)r

  =  ( 1−n + r

r
).   
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• Simultaneous Linear Recurrence  
 Relations 

Ex.  Solve an+1 = 2an + bn 

   bn+1 = an + bn,  a0 = 1,  b0 = 0  

Let  A(x) =
0

∞
∑

n=
anxn

  and  B(x) =
0

∞
∑

n=
bnxn  

be the generating functions for (a0, a1, a2, …)  

and (b0, b1, b2, …,), respectively. 

0

∞
∑

n=
an+1xn+1

  =  2x
0

∞
∑

n=
anxn

  +  x
0

∞
∑

n=
bnxn 

0

∞
∑

n=
bn+1xn+1

  =  x
0

∞
∑

n=
anxn

  +  x
0

∞
∑

n=
bnxn 

A(x) − a0 = 2xA(x) + xB(x)  

B(x) − b0 = xA(x) + xB(x)  
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⇒  A(x) = 2
1

3 1
−

− +
x

x x
 = x

x x
1

( (
−

− ) − )α β
 

  = 55
10

− −
 ⋅ x

1
− α

 + 55
10

− +
 ⋅ x

1
− β

 

 B(x) = 2 3 1− +
x

x x
 = x

x x( (− ) − )α β
 

  = 55 3
10
+

 ⋅ x
1
− α

 + 55 3
10
−

 ⋅ x
1
− β

, 

 where  α = 
5

2
3+ ,  β = 

5
2

3−  

⇒ an = 55
10
+

 ⋅ +15
2

( )3− n  + 55
10
−

 ⋅ +15
2

( )3+ n   

 bn = 55 3
10

− −
 ⋅ +15

2
( )3− n  + 55 3

10
− +

 ⋅ +15
2

( )3+ n  
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• General First-Order Linear Recurrence  
 Relations 

an = p(n)an−1 + f(n) 

The solution has the form of  an = 
h
na ⋅ bn,  where 

h
na  is 

the homogeneous solution (i.e., h
na  = p(n) 1−

h
na ). 

1.  Find 
h
na . 

2.  Find bn. 

h
na ⋅ bn  =  p(n) 1−

h
na bn−1 + f(n) 

 =  h
na bn−1 + f(n) 

⇒  bn =  bn−1 + 
( )

h
n

f n
a

  

 =  ( )
h
n

f n
a  + 

( )
1

1
h
n

f n
a −

−
 +  …  + 

( )
1

1
h

f
a  + b0 

 =  ( )
h
n

f n
a  + 

( )
1

1
h
n

f n
a −

−
 +  …  + 

( )
1

1
h

f
a  + 

0

0
h

a
a
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Ex.  an − 1
n

n−
an−1 = n3,  a1 = 1. 

h
na  = n⋅ ha1   

( ha1  ≠ 0;  if 
ha1  = 0,  then  2

ha  = 0,  3
ha  = 0,  …) 

(n⋅ ha1 )⋅bn = 1
n

n−
⋅[(n − 1)⋅ ha1 ]⋅bn−1 + n3 

⇒  bn =  bn−1 + n2/ ha1 ,  (b1 = a1/ ha1  = 1/ ha1 ) 

 = bn−2 + [(n − 1)2
 + n2]/ ha1  

   . 
   . 
   . 

  = b1 + [22
 + … + (n − 1)2

 + n2]/ ha1   

 = [1 + 22
 + … + (n − 1)2

 + n2]/ ha1  

 =  ( )( )
1

1 2 1
6 h

n n n
a•

+ +  
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⇒  an = h
na ⋅ bn 

  = (n⋅ ha1 )⋅ ( )( )
1

1 2 1
6 h

n n n
a•

+ +
 

  = 
( )( )2 1 2 1

6
n n n+ +

 

(do Exercise  # 4) 


